

Coordination Chemistry V

Very Important Paper

International Edition: DOI: 10.1002/anie.201508232 German Edition: DOI: 10.1002/ange.201508232

Synthesis of a "Masked" Terminal Nickel(II) Sulfide by Reductive Deprotection and its Reaction with Nitrous Oxide

Nathaniel J. Hartmann, Guang Wu, and Trevor W. Hayton*

Abstract: The addition of 1 equiv of KSCPh₃ to $[L^RNiCl]$ $(L^R = \{(2,6-iPr_2C_6H_3)NC(R)\}_2CH; R = Me, tBu)$ in C_6H_6 results in the formation of $[L^RNi(SCPh_3)]$ (1: R = Me; 2: R = tBu) in good yields. Subsequent reduction of 1 and 2 with 2 equiv of KC_8 in cold $(-25^{\circ}C)$ Et_2O in the presence of 2 equiv of 18-crown-6 results in the formation of "masked" terminal Ni^{II} sulfides, $[K(18-crown-6)][L^RNi(S)]$ (3: R = Me; 4: R = tBu), also in good yields. An X-ray crystallographic analysis of these complexes suggests that they feature partial multiplebond character in their Ni-S linkages. Addition of N_2O to a toluene solution of 4 provides $[K(18-crown-6)][L^{IBu}Ni(SN=NO)]$, which features the first example of a thiohyponitrite $(\kappa^2-[SN=NO]^2-)$ ligand.

Metal-ligand multiple bonding in the late transition metals (Groups 9, 10, 11) is relatively rare. [1,2] This observation can be rationalized by the "oxo wall" concept, [3] which postulates that a tetragonal complex with d⁵ configuration (or greater) cannot form stable multiple bonds because of occupation of the M=E π^* orbitals. Whereas no exceptions to the "oxo wall" concept are currently known, it can be circumvented by reducing the coordination number at the metal center. For example, two late-metal oxo complexes have been reported, namely $[Ir(O)(Mes)_3]$ $(Mes = 2,4,6-Me_3C_6H_2)$ and [Pt(O)-(PCN)] $(PCN = C_6H_3[CH_2P(tBu)_2](CH_2CH_2NMe_2))$, and both feature four-coordinate geometries.^[4,5] Two recently isolated Ir nitride complexes also feature four-coordinate geometries. [6,7] Similarly, a handful of isolable cobalt, nickel, and copper nitrene species are known, for example [(Me₂NN)Co(NAd)] $(Me_2NN = \{(2,6-Me_2C_6H_3)NC-$ [(dtbpe)Ni(N(2,6-iPr₂C₆H₃))](Me)₂CH). $tBu_{2}PCH_{2}CH_{2}PtBu_{2}), \ \ [(IPr^{*})Ni(N(2,6\text{-}(Mes)_{2}C_{6}H_{3}))], \ \ and$ $(Me_3NN = \{(2,4,6-Me_3C_6H_2)NC [\{(Me_3NN)Cu\}_2(\mu-NAd)]$ (Me)₂CH), which also feature low coordination numbers (2-4).[8-11] Also of note are the closely related nickel carbene and phosphinidene complexes [(dtbpe)Ni(E)] $(E = CPh_2,$ P(2,6-(Mes)₂C₆H₃)), reported by Hillhouse and co-workers.[12,13] This class of materials is highly reactive and capable of effecting CO oxidation, C-H activation, and [2+2] cycloaddition, demonstrating their utility for small-molecule activation.[14-25]

In contrast to the above-mentioned success with C, O, N, and P donor multiple bonds, attempts to synthesize a stable late-metal terminal sulfide have been unsuccessful. For example, Driess and co-workers postulated that reaction of $[L^R Ni(\eta^2 - S_2)] \quad (L^R = \{(2,6 - i Pr_2 C_6 H_3) NC(Me)\}_2 CH \quad with \quad Ph_3 Presulted in transient formation of <math display="inline">[L^R Ni(S)]$, which, however, rapidly dimerizes to form a bridged disulfide complex. $^{[26]}$ Similarly, Jones and Vicic reported the transient formation of [(dippe)Ni(S)], which could be trapped by a variety of nitrones. $^{[27]}$

Recently, we reported the synthesis of a Th^{IV} sulfide complex, $[K(18\text{-crown-6})][Th(S)(NR_2)_3]$ $(R=SiMe_3)$, by reductive removal of the trityl protecting group. Building on this work, we next attempted to apply this "reductive deprotection" reaction to the synthesis of an isolable latemetal terminal sulfide. Herein, we report the synthesis of a "masked" terminal Ni^{II} sulfide and describe its reactivity with nitrous oxide.

Addition of 1 equiv of KSCPh₃ to [L^RNiCl] (R = Me, tBu)^[29] in C₆H₆ results in the formation of [L^RNi(SCPh₃)] (1: R = Me; 2: R = tBu; Scheme 1). Their formulations were confirmed by elemental analysis and X-ray crystallography (full structural details can be found in the Supporting Information). Moreover, their ¹H NMR spectra are similar to those reported for other Ni^{II} β -diketiminate thiolate complexes, such as [L^{IBU}Ni(SPh)] and [L^{IBU}Ni(SEt)].^[30,31]

Subsequent reduction of 1 and 2 with 2 equiv of KC_8 in cold (-25°C) Et₂O in the presence of 2 equiv of 18-crown-6

R Dipp

Ni^{II}—CI

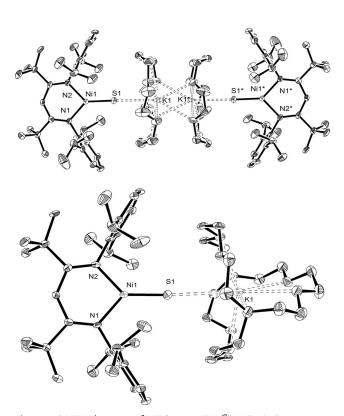
KSCPh₃

$$C_6H_6$$
-KCI

R Dipp

 $R = Me: 1;$
 $R = Me : 1;$
 $R = M$

Scheme 1. Syntheses of complexes 1–5.


^[*] N. J. Hartmann, Dr. G. Wu, Prof. Dr. T. W. Hayton Department of Chemistry and Biochemistry University of California Santa Barbara Santa Barbara, CA 93106 (USA) E-mail: hayton@chem.ucsb.edu

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201508232.

results in the formation of $[K(18\text{-crown-6})][L^RNi(S)]$ (3: R = Me; 4: R = tBu). Complex 3 could be isolated as dark green blocks from hexanes/C₆H₆ in 66% yield, whereas complex 4 was isolated as dark brown plates from toluene/isooctane in 88% yield. Similarly, use of 2,2,2-cryptand in place of 18crown-6 afforded [K(2,2,2-cryptand)][L^{tBu}Ni(S)] (5), which was isolated as brown needles in 89% yield after crystallization from hexanes. The syntheses of 3, 4, and 5 also produce 1 equiv of $[K(L)][CPh_3]$ (L=18-crown-6, 2,2,2-cryptand), which precipitates from the reaction mixtures as a bright red solid that can be separated from the nickel-containing products by filtration (Scheme 1). Interestingly, C-S bond cleavage has previously been observed in a Ni tritylthiolate complex. [32] For example, Riordan and co-workers reported the formation of $[\{PhB(CH_2StBu)_3\}Ni]_2(\mu_2-\eta^2,\eta^2-S_2)$ and CPh_3 upon thermal decomposition of [{PhB(CH₂StBu)₃}Ni-(SCPh₃)]; however, there was no evidence for the generation of a terminal sulfide in this reaction.

The formulations of complexes **3**, **4**, and **5** were confirmed through elemental analysis, ¹H NMR spectroscopy, and X-ray crystallography. The solid-state structures of **4** and **5** are shown in Figure 1, and selected metrical parameters can be found in Table 1. Complexes **3**, **4**, and **5** feature identical

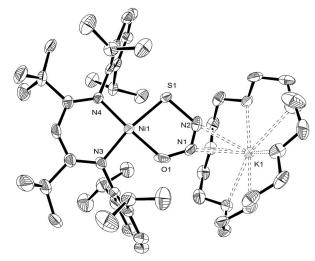
Figure 1. ORTEP drawings of [K(18-crown-6)][L^{18u}Ni(S)] ($4\cdot C_8H_{18}$; top) and [K(2,2,2-cryptand)][L^{18u}Ni(S)] (5, bottom). Thermal ellipsoids shown at 50% probability. Hydrogen atoms and C_8H_{18} solvate molecules have been omitted for clarity.

coordination environments about their Ni centers. In the solid state, each exhibits a planar ($\Sigma(L-Ni-L) \approx 360^{\circ}$), Y-shaped geometry. The Ni-S bond lengths in 3-5 range from 2.0635(6) to 2.084(1) Å. All three complexes feature long S-K inter-

Table 1: Selected bond lengths and angles for the nickel(II) sulfide complexes 3, 4, and 5.

Bond/angle	3	4	5
Ni1-S1 [Å]	2.0635(6)	2.064(2)	2.084(1)
S1-K1 [Å]	3.1212(7)	3.094(1)	3.379(1)
Ni-N (av.) [Å]	1.94	1.93	1.93
Ni1-S1-K1 [°]	153.74(3)	177.95(8)	170.08(5)

actions, [28,33] which range from 3.094(2) to 3.379(1) Å. Not surprisingly, complex **5**, which features the strongest K⁺ chelator (2,2,2-cryptand), exhibits the longest S–K interaction. Interestingly, the Ni-S-K angles vary widely, from 153.74(3)° (for **3**) to 177.95(8)° (for **4**), a disparity that we ascribe to crystal packing. Furthermore, complex **4** exists as a dimer in the solid state; its monomer units are connected by bridging interactions between the [K(18-crown-6]⁺ cations (Figure 1). Finally, the Ni–N distances in **3–5** are comparable to those found in other three-coordinate Ni^{II} β -diketiminate complexes. [29–31,34]


The Ni–S bond lengths in complexes **3**, **4**, and **5** are amongst the shortest known, and are intermediate between the additive covalent radii projected for nickel–sulfur single (2.13 Å) and double bonds (1.95 Å). [23,24,35] For comparison, [{L'^Bu'Ni}_2(\mu-S)], [30] [{(IPr)Ni}_2(\mu-S)_2] (IPr=1,3-bis(2,6-diiso-propylphenyl)imidazol-2-ylidene), and [{PhB-(CH_2StBu)_3}Ni]_2(\mu-S)[32] display comparable Ni–S bond lengths of 2.0651(7), 2.0972(6), and 2.0714(4) Å, respectively, despite each possessing a bridging S²⁻ ligand. Overall, this suggests similar magnitudes of π -bonding in both classes of materials.

The ¹H NMR spectra of complexes **3–5** in C₆D₆ are typical of three-coordinate, high-spin Ni^{II} β -diketiminate complexes. [29,34] Notably, the resonances assignable to the [K(18crown-6)]+ cations are broad and shifted to 1.18 and 0.28 ppm for 3 and 4, respectively. The 2,2,2-cryptand resonances for 5 are similarly broadened and shifted. These data suggest that the $[K(L)]^+$ cations form a contact pair with the $[L^RNi(S)]^$ anions in solution. In the solid state, complexes 3 and 4 exhibit effective magnetic moments of 2.80 B.M. at 300 K (D =91 cm⁻¹) and 2.98 B.M. at 300 K ($D = 94 \text{ cm}^{-1}$), respectively (Figures S22, S23). This behavior is consistent with that anticipated for a Y-shaped Ni^{II} complex with an S=1 ground state. [37] Overall, the solid-state molecular structures and magnetic properties of 3-5 confirm our Ni^{II} oxidation-state assignments, and exclude the possibility that the sulfur atom is protonated, as this would require nickel to be in the +1oxidation state. Intriguingly, the related Ni^{II} imido, carbene, and phosphinidene complexes, such as [(dtbpe)Ni(E)], are diamagnetic. [9,12,13] This change in spin state may reflect different amounts of π -bonding in the two classes of molecules.

The combined characterization data for complexes 3–5 reveal that the S–K interaction is conserved in both solution and the solid state. However, preliminary reactivity data suggest that the S–K interaction is quite labile, permitting these complexes to behave as "masked" terminal sulfides.^[38] For example, exposure of complex 4 to an atmosphere of nitrous oxide (N₂O) resulted in a rapid color change from

dark brown to yellow. Isolation of the resulting product by crystallization from toluene/isooctane provided [K(18-crown-6)][L^{'Bu}Ni(SN=NO)] (6) as an orange crystalline solid in 62 % yield [Eq. (1)]. Complex 6 crystallized in the triclinic space

Figure 2. ORTEP drawing of [K(18-crown-6)][L^{18u}Ni(κ²-SN=NO)] (6-1.5 C₇H₈·0.5 C₈H₁₈). Thermal ellipsoids shown at 50% probability. Hydrogen atoms and C₇H₈ and C₈H₁₈ solvate molecules have been omitted for clarity.

group $P\bar{1}$, and its solid-state molecular structure is shown in Figure 2. Complex 6 features an unprecedented κ^2 -thiohyponitrite ([SN=NO]²⁻) ligand, formed by [3+2] cycloaddition of N₂O across the Ni–S bond. The S–N and O–N distances in the [SN=NO]²⁻ moiety are 1.787(6) Å and 1.308(1) Å, respectively, and are suggestive of single bonds, while the N–N bond length of 1.154(9) Å is indicative of a double bond. These parameters are consistent with the presence of a dianionic hyponitrite moiety, which, in combination with the diamagnetism of 6, as revealed by its ¹H NMR spectrum (see the Supporting Information), is consistent with the anticipated Ni^{II} oxidation state.

Complex 6 is a rare example of a structurally characterized transition-metal complex containing activated N_2O and features the first example of a thiohyponitrite (κ^2 -[SN=NO]²⁻) ligand. Its formation is reminiscent of the frustrated Lewis pair (FLP) systems $tBu_3P/B(C_6F_5)_3$ and [{(C₆H₄)₂(O)CMe₂}(PMes₂)(B(C₆F₅)₂)], which react with N_2O to form [$tBu_3P(N=NO)B(C_6F_5)_3$]^[39] and [{(C₆H₄)₂-(O)CMe₂}(PMes₂)(N=NO)(B(C₆F₅)₂)], respectively, or the reaction of N_2O with Na_2O , which results in the formation

of *trans*-[Na₂N₂O₂].^[41,42] Also relevant is the reaction of IPr with N₂O to form IPr–N₂O.^[43] These results support the conclusion that the [SN=NO]²⁻ ligand is formed by nucleophilic attack of N₂O at the sulfide ligand in 4.^[39,43,44]

In summary, cleavage of the C–S bond in $[L^RNi(SCPh_3)]$ by reductive deprotection provides access to a family of "masked" terminal Ni^{II} sulfides, $[K(L)][(L^R)Ni(S)]$. The Ni–S distances in this class of materials are amongst the shortest observed, suggesting the presence of partial multiple-bond character. $[K(18\text{-crown-6})][(L^{\prime Bu})Ni(S)]$ reacts with N₂O to form a novel thiohyponitrite complex, $[K(18\text{-crown-6})][L^{\prime Bu}Ni(SN=NO)]$, confirming the lability of the S–K interaction. Going forward, we will continue to explore the small-molecule reactivity of this class of complexes. Furthermore, we will target the synthesis of their oxygen congeners.

Acknowledgements

We thank the National Science Foundation (CHE 1361654) for financial support of this work. This research made use of the SQUID Magnetometer of the Materials Research Laboratory, an NSF MRSEC (DMR 1121053), and the 400 MHz NMR Spectrometer of the Department of Chemistry and Biochemistry, which was supported by an NIH SIG (1S10OD012077-01A1).

Keywords: coordination chemistry · nickel · nitrogen oxides · protecting groups · sulfides

How to cite: Angew. Chem. Int. Ed. 2015, 54, 14956–14959 Angew. Chem. 2015, 127, 15169–15172

- [1] J. F. Berry, Comments Inorg. Chem. 2009, 30, 28.
- [2] K. Ray, F. Heims, F. F. Pfaff, Eur. J. Inorg. Chem. 2013, 3784.
- [3] J. R. Winkler, H. B. Gray, Struct. Bonding 2011, 142, 17.
- [4] R. S. Hay-Motherwell, G. Wilkinson, B. Hussain-Bates, M. B. Hursthouse, *Polyhedron* 1993, 12, 2009.
- [5] E. Poverenov, I. Efremenko, A. I. Frenkel, Y. Ben-David, L. J. W. Shimon, G. Leitus, L. Konstantinovski, J. M. L. Martin, D. Milstein, *Nature* 2008, 455, 1093.
- [6] J. Schöffel, A. Y. Rogachev, S. DeBeer George, P. Burger, Angew. Chem. Int. Ed. 2009, 48, 4734; Angew. Chem. 2009, 121, 4828.
- [7] M. G. Scheibel, B. Askevold, F. W. Heinemann, E. J. Reijerse, B. de Bruin, S. Schneider, *Nat. Chem.* 2012, 4, 552.
- [8] X. Dai, P. Kapoor, T. H. Warren, J. Am. Chem. Soc. 2004, 126,
- [9] D. J. Mindiola, G. L. Hillhouse, J. Am. Chem. Soc. 2001, 123, 4623.
- [10] C. A. Laskowski, A. J. M. Miller, G. L. Hillhouse, T. R. Cundari, J. Am. Chem. Soc. 2011, 133, 771.
- [11] Y. M. Badiei, A. Dinescu, X. Dai, R. M. Palomino, F. W. Heinemann, T. R. Cundari, T. H. Warren, *Angew. Chem. Int. Ed.* 2008, 47, 9961; *Angew. Chem.* 2008, 120, 10109.
- [12] D. J. Mindiola, G. L. Hillhouse, J. Am. Chem. Soc. 2002, 124, 9976
- [13] R. Melenkivitz, D. J. Mindiola, G. L. Hillhouse, J. Am. Chem. Soc. 2002, 124, 3846.
- [14] D. M. Jenkins, T. A. Betley, J. C. Peters, J. Am. Chem. Soc. 2002, 124, 11238.

- [15] D. T. Shay, G. P. A. Yap, L. N. Zakharov, A. L. Rheingold, K. H. Theopold, Angew. Chem. Int. Ed. 2005, 44, 1508; Angew. Chem. 2005, 117, 1532.
- [16] C. Jones, C. Schulten, R. P. Rose, A. Stasch, S. Aldridge, W. D. Woodul, K. S. Murray, B. Moubaraki, M. Brynda, G. La Macchia, L. Gagliardi, *Angew. Chem. Int. Ed.* 2009, 48, 7406; *Angew. Chem.* 2009, 121, 7542.
- [17] E. R. King, G. T. Sazama, T. A. Betley, J. Am. Chem. Soc. 2012, 134, 17858.
- [18] M. P. Mehn, S. D. Brown, D. M. Jenkins, J. C. Peters, L. Que, *Inorg. Chem.* 2006, 45, 7417.
- [19] D. J. Mindiola, R. Waterman, V. M. Iluc, T. R. Cundari, G. L. Hillhouse, *Inorg. Chem.* **2014**, *53*, 13227.
- [20] T. R. Cundari, J. O. C. Jimenez-Halla, G. R. Morello, S. Vaddadi, J. Am. Chem. Soc. 2008, 130, 13051.
- [21] A. W. Pierpont, T. R. Cundari, *Inorg. Chem.* **2010**, *49*, 2038.
- [22] V. M. Iluc, G. L. Hillhouse, J. Am. Chem. Soc. 2010, 132, 15148.
- [23] V. M. Iluc, G. L. Hillhouse, J. Am. Chem. Soc. 2014, 136, 6479.
- [24] V. M. Iluc, A. J. M. Miller, J. S. Anderson, M. J. Monreal, M. P. Mehn, G. L. Hillhouse, J. Am. Chem. Soc. 2011, 133, 13055.
- [25] E. Kogut, H. L. Wiencko, L. Zhang, D. E. Cordeau, T. H. Warren, J. Am. Chem. Soc. 2005, 127, 11248.
- [26] S. Yao, C. Milsmann, E. Bill, K. Wieghardt, M. Driess, J. Am. Chem. Soc. 2008, 130, 13536.
- [27] D. A. Vicic, W. D. Jones, J. Am. Chem. Soc. 1999, 121, 4070.
- [28] D. E. Smiles, G. Wu, N. Kaltsoyannis, T. W. Hayton, *Chem. Sci.* 2015, 6, 3891.
- [29] P. L. Holland, T. R. Cundari, L. L. Perez, N. A. Eckert, R. J. Lachicotte, J. Am. Chem. Soc. 2002, 124, 14416.
- [30] P. Holze, B. Horn, C. Limberg, C. Matlachowski, S. Mebs, Angew. Chem. Int. Ed. 2014, 53, 2750; Angew. Chem. 2014, 126, 2788

- [31] B. Horn, C. Limberg, C. Herwig, B. Braun, *Inorg. Chem.* 2014, 53, 6867.
- [32] J. Cho, K. M. Van Heuvelen, G. P. A. Yap, T. C. Brunold, C. G. Riordan, *Inorg. Chem.* 2008, 47, 3931.
- [33] D. E. Smiles, G. Wu, T. W. Hayton, J. Am. Chem. Soc. 2014, 136, 96.
- [34] N. A. Eckert, E. M. Bones, R. J. Lachicotte, P. L. Holland, *Inorg. Chem.* 2003, 42, 1720.
- [35] P. Pyykkö, J. Phys. Chem. A 2015, 119, 2326.
- [36] F. Olechnowicz, G. L. Hillhouse, R. F. Jordan, *Inorg. Chem.* 2015, 54, 2705.
- [37] C. A. Laskowski, G. R. Morello, C. T. Saouma, T. R. Cundari, G. L. Hillhouse, *Chem. Sci.* **2013**, *4*, 170.
- [38] D. J. Mindiola, Angew. Chem. Int. Ed. 2008, 47, 1557; Angew. Chem. 2008, 120, 1580.
- [39] E. Otten, R. C. Neu, D. W. Stephan, J. Am. Chem. Soc. 2009, 131, 9918.
- [40] Z. Mo, E. L. Kolychev, A. Rit, J. Campos, H. Niu, S. Aldridge, J. Am. Chem. Soc. 2015, 137, 12227.
- [41] C. Feldmann, M. Jansen, Angew. Chem. Int. Ed. Engl. 1996, 35, 1728; Angew. Chem. 1996, 108, 1807.
- [42] A. M. Wright, T. W. Hayton, Inorg. Chem. 2015, 54, 9330.
- [43] A. G. Tskhovrebov, E. Solari, M. D. Wodrich, R. Scopelliti, K. Severin, Angew. Chem. Int. Ed. 2012, 51, 232; Angew. Chem. 2012, 124, 236.
- [44] H. Yu, G. Jia, Z. Lin, Organometallics 2008, 27, 3825.

Received: September 2, 2015 Published online: October 12, 2015